ATNoSFERES: a Model for Evolutive Agent Behaviors

S. Landau, S. Picault, A. Drogoul

Laboratoire d’Informatique de Paris 6
MIRIAD team
Ethological approach towards adaptive MAS

- focus on behavior design & selection
- strong influence of the environment (situatedness)

Model requirements

- automatic design of adaptive agents behaviors
- Darwinian evolution as design mechanism
- multi-level organization
Overview of evolutionary approaches

Genetic Algorithms
(Holland)

- Parameters for a predefined behavior

010111001011110010100101

+ Continuity genotype - phenotype
- Poor expressive power

Genetic Programming
(Koza)

+ Automatic behavior design
- Strong dependencies between nodes
The ATNoSFERES model Agent architecture

...010111001011110010100101...

\[\text{bitstring} \]

\[\text{Translation} \]

\[\text{tokens} \]

\[\text{Interpretation} \]

\[\text{graph (ATN)} \]
The ATNoSFERES model Multi-agent architecture

...0101110010111111011101...

...010111001011110010100101...

...010011011011110010100101...
Properties of the model

• No hypothesis regarding cognitive abilities
• Any genotype produces a consistent behavior
• Continuity genotype \Leftrightarrow phenotype
• High expressive power in behaviors

• Validation by experiments
• Adaptation of behavior-building strategies
Perspectives

• « Composite Agent » encapsulating a MAS
 • multi-level organization
 • multi-level specification
• Metabolic regulation of behaviors

• Experiments on predator/prey issues
• Experiments on real robots (MICRobES Project: http://miriad.lip6.fr/microbes)